October, 1967 Report ESL-R-326 Copy 139

OPTIMAL PIECEWISE CONSTANT SOLUTIONS
OF THE LINEAR REGULATOR PROBLEM

by
Thomas Fortmann

This research was carried out at the M.I.T. Electronic Systems
Laboratory with partial support extended by the National Aeronautics
and Space Administration under Research Gra.nt NGR-22-009(124),

M.I.T. DSR Project No. 76265.

Electronic Systems Laboratory
Department of Electrical Engineering
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

ACKNOWLEDGEMENT

The author wishes to express his gratitude to Professor Michael
Athans for his encouragement and supervision during the course
of this research. Special thanks are also due to Dr. David
Kleinman for his cooperation, and to Bill Levine and Alex Levis
for helpful discussions

This research was supported in part by a National Science Founda-
tion Graduate Fellowship and in part by the National Aeronautics

and Space Administration under Research Grant NGR-22-009(124).
The computations were performed at the M.I.T. Computation Center.

iv

PRECEDING PAGE BLANK NOT FILMED.

ABSTRACT

The solution of the optimal linear regulator problem with a qua-
dratic cost functional involves a time-varying matrix (the solution
of a matrix Riccati differential equation) in the feedback loop. One
suboptimal approach to the problem which simplifies implementa -
tion is to let the time-varying matrix be piecewise constant. A
computer program is presented here which calculates the (sub)
optimal feedback gains under this constraint, where the plant, cost
functional, and switching times are specified a priori, and results
are obtained for a third-order example.

iii

CHAPTER 1

CHAPTER II

CHAPTER 1II

CHAPTER IV
CHAPTER V

APPENDIX A

APPENDIX B

CONTENTS
INTRODUCTION page
PROBLEM FORMULATION AND

NECESSARY CONDITION

ITERATIVE CALCULATION OF
GAIN MATRICES

Generation of Starting Values
Determination of Step Sizes

Computation of State Transition Matrices
Computation of V(t)

Computation of L(n)

Final Steps

NUMERICAL RESULTS

CONCLUSIONS
ERROR BOUNDS

e

USE OF THE PROGRAM

1. Input Variables
2. Other Variables
3. Main Program: SUBOPT
4. Subroutines COMPSTP and INTEG
5. Subroutines MATMULT and MINV
6. Listings
REFERENCES
LIST OF FIGURES
1. Basic Flow Chart page

2. Feedback Gain Matrix L(t)

A
=l L, ;0]

for One Subinterval

3. Feedback Gain Matrix for Two Subintervals

Feedback Gain Matrix for Four Subintervals
5. Feedback Gain Matrix for Sixteen Subintervals

18
19
20
21

I. INTRODUCTION

The solution of the optimal linear regulator problem with qua-
dratic cost in feedback form expresses the control vector as a gain
matrix multiplying the state vector. For problems with a fixed termi-
nal time, this gain comes from the time-varying solution of a matrix
Riccati equation. Since the Riccati equation must be solved off-line,
implementation of such a control may lead to severe storage and
synchronization problems.

Kleinman recognized this drawback and in his Ph.D. thesis'® he
derived a necessary condition for optimality when the time de-
pendence of the feedback gain matrix is constrained to have a certain
form. In the case of a piecewise constant gain, he also suggested
an iterative procedure for determining a solution of the necessary
condition. The purpose of this work is to incorporate Kleinman's
iterative scheme into a complete computer algorithm.

In Section II the optimal linear regulator problem is formulated
and modified slightly to accommodate piecewise constant feedback
gains; then the new optimization problem is stated and the neces-
sary condition for optimality is given. In Section III the iterative
scheme for satisfying the necessary condition is described, and the
basic steps of the computer algorithms are shown in the form of a
flow chart. The program steps and problems of error control are
then discussed in more detail. Numerical results are discussed in
Section IV.

Given a system to be controlled, a cost functional, and switching
times, the program generates the appropriate gain matrices for a
suboptimal feedback control law. A basic assumption here, in the
absence of a sufficient condition for optimality, is that the optimal
gains exist and are unique. It is also assumed that the necessary
condition has no extraneous solutions to which the iterative pro-

cedure may converge.

* . .
Superscripts refer to numbered items in the References.

-1-

II. PROBLEM FORMULATION AND NECESSARY CONDITION

The linear regulator problem involves a time-invariant system

governed by a differential equation

x(t) = Ax(t) + Bu(t)
(1)
x(tg) = %,

where x(t) is the state and u(t) is the control.’e< The optimal con-
trol uX*(t), t <t < T, is that which minimizes the quadratic cost

functional,

Ixg.tysul-)] £ 3x (T)Fx(T)+%f [x'(t)Q x(t) +u' (t)u(t)] dt (2)
t

where F and Q are positive semidefinite, constant matrices which
are not both zero. The optimal solution is well-known (see Athans
and Falb, Reference 2, Chapter 9), and is specified in the feed-

back form,
ak(t) = -BE(®x(D) 2 -LrOx(t) (3)

where K(t) is the symmetric, positive semidefinite solution of the

matrix Riccati differential equation,

K(t) = -K(DA-AK() - Q + K(t)BBK(®)
(4)
K(T) -

To implement the optimal system in real time, the optimal feed-
back matrix L*(t) must be stored on the interval [to, T], as so-
lutions of the Riccati equation, Eq. 4, are unstable in the forward

time direction. Recognizing that this could render such a system

Capital underscored letters denote matrices; lower-case under-
scored letters are vectors; the dot indicates differentiation; and
a prime means transpose.

-2-

-3-

impractical, Kleinman1 considered a class of suboptimal feedback
matrices, including the case where L#(t) is constrained to be piece-
wise constant.

Suppose now that one does not wish to use the optimal control law
of Eq. 3. In particular, let L(t) denote an arbitrary feedback gain

matrix, so that the closed-loop system becomes

2(t) = [A- BL®]x(t) £ Ht)x (1)
(5)

x(t p.S

o = %o

Now the cost functional, Eq. 2, may be evaluated to be

1 1
where the symmetric, positive semidefinite matrix X(to) is given by

T
Vitg £ 8 (T,tgE 8(T,t) + [#(r,t)[Q+L(NL(M] &(r, t)dr

to

(7)
and where &(t,t) is the state transition matrix for the closed-loop

system, Eq. 5, i.e.,

2 3(r,t) = HM(r,Y)
(8)

Lar,t) = -3(r, 0 H®
x(r) = B(r,0)x(0) (9)

By letting the argument of V(.) vary and differentiating, one obtains

T
V(t) = (T,t)FE 8(T,t) +f & (r,t)[Q+ L(T)L(T)] &(r, t)ar (10)
t
or
V(t) = -H'(H)V(t)-V(HH(t)-Q - L'(t)L(t)

(11)

-4 -

In the system to be considered here, the feedback gain matrix is

constrained to be piecewise constant, i.e.,

L(t)

il

L(n)

for t €t<t (12)
n = 'n

+1
H(t)

H
iz
2

i
>

(]
o
I
E)

where the switching times

s

t.<t, < .., T

0<hH <tn-1 <Mn

are given. In this case the transition matrix takes on the particularly

simple form

H(n)(t-t)
g(t,to)z e g(tn,to), tngt_<_tn+l
n-1 .
Bt) < e}_{(l)(ti+l-ti) (13)
n’ 0 ~
i=0
g(tovto) = .l

In order to avoid a solution which depends on the initial state X0

Kleinman chose to minimize the functional*

}J-[_I;‘(')] = tr_Y(to)

with respect to L(n), n=0,1,2,...N-1, rather than the conventional
cost functional, Eq. 6.
To summarize, the optimization problem which is to be solved is

the following:

A suboptimal linear regulator problem

Given a dynamical system, Eq. 1, and a set of switching
times {t;,t,,t;,...T =T}, determine the set of feedback gain

matrices

L*(n), n=0,1,2,...N-1

*
The implications of this are discussed in Ref. 1, pp. 72-76.

-5-

such that the trajectory of the state of the closed-loop system

1]

x(t) = [A - BL*(n)]x(t) = H¥(n)x(t), t <t<t_

+1

x(t

o = %o
on the interval [0, T] minimizes the functional

rIL()] = trv(t)

where V(t is given by Eq. 7.

o
Appealing to elementary calculus of variations, a necessary con-

dition for L*(:) to extremize tr_/(to) is that

for all i, j and

=0 (14)
for all n=0,1,...N-1

8trV(to)
o4 ij(n) *
where Iij(n) are the elements of the matrix L(n). The notation may

be simplified considerably at this point by using the concept of a

. o3
""gradient matrix"

atr_Y(to)
oL (n)

whose (i, j)-th element is
8tr_Y(t0)
6!ij(n)

The calculation of the gradient matrix for this problem is straight-
forward but tedious, and will not be repeated here.* The result is

that the necessary condition,Eq. 14,becomes

t

BtrV(t,) jﬁ‘“ : e
—— _ -2 L#(n) -B'V*(t)]8¥{t, t)&% (t, t)dt=0
T Lmyapam) ° °
n
for n=0,1,2,...N-1 (15)

This is done in Kleinman, Ref. 1, pp. 84-86, for a more general
problem.

-6-

where V*(t) satisfies Eq. 10 with & = # and &* satisfies Eq. 13
with H(n) = H¥(n)=A-B L*(n). Equation 15 may also be written in the
form

fntl ‘ntl

L) =B/ [Wree(e, tg) 8 (6,) at] [sergaee e
tn n
for n=0,1,2,...N-1 (16)

In the next section, an iterative procedure for finding L¥*(n),
n=0,1,2,...N-1, which satisfy Eq. 16 will be discussed. But it should
be noted that Eq. 16 is not a sufficient condition for optimality, and
hence one must assume a priori that an optimxim exists and is unique.
Furthermore, the iterative scheme is not foolproof, and it may con-

verge to relative minima or inflection points, if these exist.

III. ITERATIVE CALCULATION OF GAIN MATRICES

Since the right-hand side of the necessary condition,Eq. 16,de-
pends on the unknown gains L#(n), the solution must be found iter-
atively. The method proposed by Kleinman (Ref. 1, pp. 98-111) is the

following:*

Loy - iy +elTm -Llm)], o<ec<1 (17)

where
tn+l tn+1
Ll [Vs s gall [g geegan
t t
n n
n=0,1,2,...N-1 (18)

and where yl and 21 are obtained by using J__,] in Eqs. 10 and 13,
Kleinman verified that this converges to L*{(n) by showing that the
quantity

W[L)] - ul L)) = evieg) -ty)

. . L . . i+l i .

is always positive to first order in €. Thus if u > W at any iter-
. . . . i+ i

ation, € can be decreased and the iteration repeated until ul 1< [T

For a close enough initial guess, one would expect convergence with
€ =1, in which case this scheme is analogous to the method of suc-
cessive approximations,

The basic steps of the computer algorithm for determining
L*(n), n=0,1,...,N-1, are indicated in the flow chart of Fig. 1, and

then are discussed in more detail.

A. GENERATION OF STARTING VALUES

The initial values I__,l(n) may be chosen quite arbitrarily, as long
as the resulting system is stable. The closer they are to the optimum

values, of course, the faster the algorithm will converge. Kleinman

als
-~

Superscripts are the iteration index.
-7-

Begin
_LI Set i+1

Get initial value L1(n)
Repeat for n=0,1,.7.N-1

'

2 . . i
——I Determine step size &' for
resar—— t H

he interval [fn’fnﬂ

Repeat for n=0,1,...N-1

!

3 .
_] Compute El(tnﬂ ,to) from (13),
Repeat for n=0,1,...N-1

1

iICOmpufe 2't,ty) and V() at

each step on the interval [tn,an]

l

..§.I Repeat previous No
iteration with e<¢/2

1

e T
Compute L(n) from (18) for n=0,1,...N-1

6|Repect steps 4 and 5

!

(7] Check:
v)< 1V (1) ?

lYes

9] Compute Li”(n) from (17)

Repeat for n=0,1,...N-1

'

Set jeit+l f—

No L]O. Check for
\ Convergence

Figo 1 Basic Flow Chart

-9-

proposes the average of the Riccati solution on each time interval as

a starting value, i.e.,

tn+1
L.l(n) = t—-—-l—_r f BK(t)dt, n=0,1,...N-1 (19)
n+l n :
n

Another possibility is to set all the Ll(n) equal to the steady-state so-
lution of the Riccati equation.
This program will assume that the starting values are given, al-

though a subroutine could easily be added which would generate them.

B. DETERMINATION OF STEP SIZES

In any continuous-time problem which is to be solved by digital
computer, the time axis must be made discrete. In the present case
this consists of dividing each time interval [t“,t 1 into Mn sub-

intervals, or steps, each of length

t -t
5 = -2l n . .0,1,...N-1 (20)
n

The values of V(t) and g(t,to) are considered only at these discrete
times. The size of the an’s is chosen to give some desired accuracy
in the final solutions., Consideration of this choice will be postponed

until part E, when the other computations have been discussed.

C. COMPUTATION OF STATE TRANSITION MATRICES

Calculating g(t,to) is straightforward, since from Eq. 13,

H(n)s

3(t_+ks_,to) = [e n]kg(tn,to) (21)

o)

where k is an integer between 1 and M . Thus the & matrix at
each step is just & at the previous step multiplied by the matrix ex-

ponential
Bt +kd_+6 , t +ké&) =¢e (22)
' n n n n n

which needs to be calculated only once for each interval [tn’tn-i-l] .

-10-

This may be done conveniently with the defining series,

}_{262 _1;1363

ST— + 3T+ ... (23)

Since § will generally be quite small, this series will converge
rapidly, the number of terms to be kept depending on the desired ac-
curacy of g(t,to) . However, the error bound %rg [e-I—-Is] is related
in a complicated way* to the error bound on e=~, so the series will
be terminated when the terms become smaller than a certain toler-

ance (TOLZ2), which is left as a program variable.

D. COMPUTATION OF V(t)

Two forms are available for V(t): Eqs. 10 and 11. The latter
is a differential equation which could be integrated (backwards in time)
by any of the usual methods. However, the piecewise linearity of the

system leads to a more convenient method using Eq. 10:
- - 1 - -
V(t-5) = (T, t-5)F HT,t-5)

T

+f B (r,t-5)[Q+ L'(n)L(n)] &(7,t-5)ar (24)
t-6
n

where t =t +k§ , 1<k <M, . Using the familiar semigroup property

of transition matrices,

g(tzoto) = g(tzstl)g(tlsto) (25)

this becomes

*
See Appendix A, One converiient (but potentially inaccurate) rule of
thumb is that the error in A™ is k times the error in A,

-11-

vit-5) = 2'(t,t-5)E(T,HE HT, H&t, t-5))

T
st t-5) [2(r 0(QIL (ILE)] Hr,dr L, t-5)
t
t
+f #'(7,t-6) [QL' (nLin)] & (7, t-5)dr (26)
t-5
n
Since t + 6 <t<Lt 417 this becomes
H@n)s H(n)s_ f Hin)r Hn)7
Vit-5) = e V(t)e [Q+L'(n)Lin)]e= ar (27
0

The first term may, be gcomputed from V(t) with two multiplications,
41y o . . o

and the quantity e Towl al lready have heen calculated in part C

above. The second term is invariant for all t in the interval [tn + 6n,

tn+1] , and may be computed with a series, using Eq. 23:

[BT celTar

) E,sz Bsz
=f I+ HT+ 5T +...]_Q[_I+_P_I-r+-—2!—+...] dr
0

C+2H'CH+ g;_{z]-rz +...dr

85 [1n2 25>
=C&+ [H'CH+ gg]2!+[C+2H'CH+ CH]-—; (28)
This is an easy series to compute, since each term (denoted Ij)
follows from the previous one:
b
T. = +(HT, ,+ T 29
=i] g =j-1 "J‘l"] (29

-12-

The series will be terminated when the terms become smaller than

TOLZ, just as in part C above.

A
E. COMPUTATION OF L(n)

Once V(t) and &(t, to) have been calculated and stored for each
step in the interval [tn,tn +1] , any of the common quadrature methods
may be used to evaluate the integrals in Eq. 18. The scheme to be
used here was devised by Romberg, and is essentially a Richardson-
type jextrapolation of the trapezoidal rule.* It is felt that this pro-
cedure is worth the extra program complexity because it provides
substantial error reduction at very little cost in terms of running time.
Since this decreases Mn’ the number of steps required to give ﬁ(n)

a certain error tolerance, the computation time and storage require-
ments for V(t) and &(t, to) can be significantly reduced,.

At this point a rule for choosing Mn (which must be a power of 2
for this method) may be formulated, Unfortunately, the error term
for Romberg integration contains a high-order derivative of the inte -
grand, whose computation is both impractical and inaccurate. How-
ever, the error formula for the trapezoidal rule on M subintervals,

from which this method is derived, contains only a second derivative :**
1 -
|E(m) [< M m';x | i3 8, 1(n]

3
(t ,1-t) .
_ _ntl o max
g 2l gnge (30)
n

where E(n) is the error, I(t) is the integrand, and the inequality
and absolute values are to be interpreted element by element. Since
the actual Romberg error is directly related to l_ll:(n) |, Mn will be
chosen to make this error less than TOL1, a program variable. The
Romberg scheme provides an a posteriori error estimate, and TOL1

may be adjusted on successive runs until an appropriate value evolves.

For details see Ralston,Ref. 4, pp. 121-124.

Rk :
Ibid, pp. 116-117.

-13-

Since the integrand is not actually known when the step size is
chosen, E(n) can only be an estimate of the error, rather than a
bound on it. Hence, it is convenient to replace Eq. 30 by

3
(t_..-t) -
+]l n
IE(m) [| > === | 1(n) || (31)
12M

n

where I(n) approximates the second derivative of the integrand on

[tn, tn+1] and ” . ” is the norm defined by
n
A 2 2
laleie) W21/ ‘ (2)
i,j=1

Differentiating the first integrand in Eq. 18 twice yields

_i(t) = _I:I'2) V(t)E(t) -2H' (n) V(t) E(t)H' (n)

+VOEMH (n) +H (n)[Q+ L'(n)L(n)] F(t)

[Q+ L' (nLm] [HmEH2ZEMHE ()], t <t<t (33)

+1

where E(1) £2(t,t)2'(t,ty). Since JABIl<lall-lB 1, 1@ win

be approximated by

0"

Lo | = 4 ez 1 i) I (e 00 12 (34)

+alH® | 20t 17 lQ+ L)L) |

where & and V are taken from the previous iteration.
Thus the number of steps for the n-th time interval, Mn’ will be

taken as the smallest power of 2 such that

3

Cpnt) - 1/2
M > ~12(TOLI) 1(m (35)

where |li(n) ” is given by Eq. 34 and TOL1 is an adjustable program
variable.
It is clear from the above discussion that Eq. 35 is at best a

""ball -park' estimate, but a more accurate determination of the step

~-14-

sizes would require a substantial increase in program complexity. No
problems were encountered with this scheme when the program was

tested.

F. FINAL STEPS

with T(n), n=0,1,...N-1 calculated, the new feedback matrices
L}H(n) may be computed from Eq. 17, but first it is necessary to

check whether the cost has increased. If

tryi(to) > (TOL4) - tryi 'l(to) (36)

then Li(n) is replaced by L (n), n=0,1,...N-1, € is halved, and
the previous iteration is repeated (TOL4 is a program variable slightly
larger than 1).*

Otherwise the _’L_Ji(n) are checked for convergence, one entry at a

time. If

£ .k(n)

1-(TOL3) <

< 14(TOL3) for all j,k,n (37)

where lij(n) are the elements of I—"ij(n)’ then the iterations are termi-
nated (TOL3 is another program variable to be supplied at run time).
If Eq. 37 is not satisfied then Eq. 17 is used to get L1+1(n),

n=0,1,...N-1, and the iterations continue.

In several test runs it was found that tr__/l(to) converged before

L}(n), and inequality 36 appeared to be true, due to roundoff noise.
Thus TOL4 was added to avoid unnecessary repetitions.

IV. NUMERICAL RESULTS

The algorithm as outlined above has been programmed in PL/I
language and run on the IBM System/360 computer at the M.I.T.
Computation Center. A more detailed description of the program is
given in Appendix B.

The program was tested with the two numerical examples of
Kleinman, a double integrator plant with N=1 and N=2., His re-
sults were duplicated to within roundoff errors and the reader is
referred to his thesis (Ref. 1, pp. 111-118) for a discussion of them.
The program was then used to generate suboptimal feedback matrices
for the following output regulator problem involving a third order

plant:

System dynamics:

!'-1 0 o'} !’2]
x(t) = Ax(t)+but) =10 0 2|x(t)+ Zlu(t‘) {52)
0 -2 0 [-IJ
ylt) = c'x(t) = [1 -1 0] x(t) (53)
Transfer function:
H(s) = ¢'(sI-A)'b = —2—— (54)
(s+1)(s™ +4)
Impulse response:
h{t) = ¢' eét_}g = Ze-t-2c032t+ sin2 t (55)
Cost functional for the optimal linear regulator problem:
2
2 2
Tlxg, u] = [[¥2® +ufo)]ar
0
2 1 -1 0
= f {x'(t) |-1 1 0] x(t)+ uz(t)}dt (56)
0 0 0 O

-15-

1 -1
i.e., Q =cc = (-1 1 , R =1[1],F=0
0o 0 O

Cost functional for the suboptimal linear regulator problem:

plL()] = tr V(0)

2

- tr [3 (r,0[Q+ L(MLMIE (r,0)dr (57)
0

The optimal control for this problem is

uk(t) = Lxox(t) 2125 psn 2x(0)] x(t) (58)

where the optimal feedback matrix is obtained by solving the matrix
Riccati equation (see Eqs. 3-4). L#(t) was computed using a program
developed by A. Levis, 11 and its components are shown as broken
lines in Figs., 2-5. The steady-state (T — o) values are indicated
by arrows,

The suboptimal (piecewise constant) feedback matrix
1o(t) é[z‘l’(t) £3(t) 23(t)] was computed for 1, 2, 4, and 16 sub-
intervals. These solutions are shown in Figs, 2, 3, 4, and 5. The
costs for these various cases are given below, together with the

optimal cost and the cost incurred by using the steady state gain
L¥(-o0).

a. Optimal solution: L{t) = IL¥t), 0<t <2

.4044 -.3620 -.3520
K(0) =[-.3620 .5600 .2425|, wu(L*) = tr K(0) = 1.6097
-.3520 .2425 .6454

b. Steady-state solution: L(t) = _I__,s = L¥(-0), 0<t <2

.4101 -.3771 -.3512
J0) = | -.3771 L6029 .2314 |, w(L®) = tr V_(0) = 1.6969
-.3512 .2314 6839

vy

_17-

c. One subinterval: L(t)=L%), 0<t<2 (Fig. 2)

.4090 -.3729 -.3504
vV (0) = |-.3729 .6001 .2297], Fﬂ;?)::tr:YO(O): 1.6735
-.3504 .2297 .6643

d. Two subintervals: L(t) :_I:O(i), i<t<i+l,i=0,1 (Fig. 3)

.4067 -.3608 -.3505
V(0 =] -.3608 .5620 .2415], Fﬂ;ﬁ)::tr|¥b(0): 1.6193
-.3505 .2415 .6505

i+l

e. Four subintervals: L(t)= Lo(i),L <t< ,
==Lt <t

i=0,1,2,3 (Fig. 4)

.4054 -.3613 -,3513
Vo0 = | -.3613 .5613 .2417|, (L) = tr V_(0) = 1.6157
-.3513 ,2417 .6490

i+l

[+} H
v

,_
1
=
o
—
o
-
trf
v

f. Sixteen subintervals: L{t) =1%), - < t<
L), z<t<

o
wn
S

.4045 -.3620 -.3520
V,(0) = | -.3620 .5699 .2424 ,FMLF)::tr.ys(O): 1.6104
-.3520 .2424 .6459

Comparing (b) and (c) above, one finds that the best constant
matrix on (0, T] provides a slight improvement over using the steady-
state solution on this interval, although both cases are within five
percent of the optimum cost. Using two subintervals in (d) brings the
cost to within one percent of the optimum, and further divisions in (e)
and (f) improve upon this only slightly.

One might expect the suboptimal piecewise constant gains to be
fairly close to the '"average' values of the optimal gains, but it is
interesting to note in Figs. 3 and4 that this is not the case. In
Fig. 5 the constant gains begin to converge to the optimal solution,

as predicted by Theorem 11 of Ref. 1.

0.5

—_— e — T T ~
~
- ~N
~
- ~
~
~
B ~
[ﬁ')o | ! ! 1 I 1 e S
N 1 2
B t (sec.)
-05 -
02 F
_______ ~
" <
\\
gZ(t) 0 ! 1 1 |\‘ |] I | L 1
i NI - 2
B v t(sec) 7
\ /
\ 7/
-0.2 i AN
| 2
0 I T | T | | T =T]
| s
t(sec.) //
B /
- //
l3m n y
-0.5 /
= /
/
L Z
7
— ”—‘_§\~___//
g SUBOPTIMAL L (1) FOR
-1.0 = | SUBINTERVAL:

OPTIMAL L*(t): -=---

STEADY-STATE
VALUE ®(-00):

Fig. 2 Feedback Gain Matrix LIH 2 [4() £,(0) £5(n] for One Subinterval

-18-

T 1T T 1
-—po
—
»
o
o
—

0.2

- —

t SUBOPTIMAL L (1) FOR
-lo L 2 SUBINTERVALS:

OPTIMAL L*(t): = ---=-

STEADY-STATE
VALUE |*(-00):

Fige 3 Feedback Gain Matrix for Two Subintervals

-19-

0.5 L
———— —_—— -
~
p— \
N
— ~
~ ~
- ~
l|“)o 1 ! 1 1) | i P S |
2
B t (sec.)
-0.5 -
0.2
e = o = = T T \\
N N
\\
fz(" 0 1 1] 1\.‘]]] 1 L i
N L 2
v t(sec.) s
R N ,
\ /
"0-2 [\\\’,/
2
0 T T T T ! T T =T ——
n P2
t (sec.) //
8 Z
- //
13(t) u p
-0.5 /
| /
/
— /
£
p— "-—'——_—/l
E/ SUBOPTIMAL L (1) FOR
-1.0" 4 SUBINTERVALS:

OPTIMAL LR (t): = =--=---

STEADY-STATE
VALUE L¥(-00):

Fig. 4 Feedback Gain Matrix for Four Subintervals

_20-

0.5

~ e~ ~
——
- ~
—
B -
~
4(1)0 i] 1]]] L] -—\t-_;\ o j
N | 2
- t (sec.)
-0.8 -
—
0.2 |
~
- Y
- \
£ -~
| 1] B 1 |] | | |
° | RN - 2
R \ t(sec.) ~
\ —
- ~ —_—
\ — /
-02 — _—/
0 | 2
] T T] T T T =T
- -
t (sec.) __,._/
n _/-/
L | //
-0.5 7
n /
—r
- /
L = =<
— T ——————
— SUBOPTIMAL L (t) FOR
-1.0F I6SUBINTERVALS:

OPTIMAL *(t): = ceeeo

STEADY-STATE
VALUE (*(-00):

Fig. 5 Feedback Gain Matrix for Sixteen Subintervals

-21-

V. CONCLUSIONS

A computer program has been presented which iteratively finds
the (sub)optimal feedback gains for a linear regulator system under
the constraint that they be piecewise constant. Implementation is
greatly simplified by such a constraint, and results obtained for a
third-order example indicate that near-optimal performance may be

achieved with piecewise -constant gains in the feedback loop.

=22 -

APPENDIX A
ERROR BOUNDS

In Section III C the matrix exponential egka is computed by
raising eH® to the k-th power. This raises the question of how much
error is allowable in eI;16 (i.e., how many terms in the series should
be kept) in order to maintain a given tolerance on [ega]k.

The basic problem is as follows: Suppose E is the true value of

a matrix and the apparent value is
A= A+E (A.1)

where E is an error matrix. Then if

A = A+EP)" = AN+E_ (A.2)
what is a bound on the error _E:.n? This preklem, and the closely re-
lated one of bounding the error in

At (A+ E)t
e— = e'= =

arise in a variety of situations.5 Expanding Eq. A.2 term by term

yields

AR (B lEs

|:1>:;

'Zg; +...+EA ™)+ ...+ E

Ih-1

(A.3)

which is difficult to evaluate, since A and E do not commute in
general, One way to avoid this difficulty is to use a norm on En which

obeys the Schwarz inequality, i.e.,
lasl < lall sl (A.4)

Then from Eq. A.3

18E] < (IE N+ NED® - IZI™ = IZ I e f+oc £ 1)
(A.5)

]

IE, |

However, this bound is not very useful in the present situation, since
”z"n-l diverges for large n whenever H_é” > 1, even though
A" || - 0 (assuming a stable system).

_23-

-24 -

The problem of bounding én was investigated at length, but no
easy solution was found. One scheme is outlined below for reference,

but is not used in the program due to its complexity.

*

Let A be a matrix with distinct eigenvalues)\1’)\2, e e)\N and
eigenvectors UppUo, .. Uy let Vis¥os--e ¥y be a reciprocal basis,
i.e.,

1 i=j
vu, =6, = (A.6)
—17) 1)
0 if]
Then the spectral representation of A is (Ref. 6, p. 314)
N N
A:ZX.E. QZx.u.vf (A.7)
= i=i i=i—i
i=1 i=1

and it is clear from multiplying Eq. A.7 by itself that

N
A = Z D E; (A.8)
i=1

If the eigenvalues are available, ** then the matrices E, may be

found quite easily using a result of Morgan.'7 Suppose the transfer

function (of the system X = Ax) is

., B(s)
H(s) = (sl - A) " = a(s) (A.9)
where d(s) = det (sI-A) = sN+ dlsN_1+ e +dN is the characteristic
polynomial and B(s) = _EOSN_l + _ElsN~2 ¥ ...+By_ is a matrix poly-

nomial often called the adjoint matrix. Then the Ei are given by

This is a reasonable assumption because the matrix entries must
be approximated by a finite number of digits in computer storage and
an arbitrarily small perturbation of their values will separate any
multiple eigenvalues,

sk sk
They may be found, for instance, by solving for the roots of the

characteristic polynomial d(s), which is available from the re-
cursion formula Eq. A.11.

s —=, i=1,2,...N (A.10)

The coefficients of B(s) may be generated with a well-known algo-

rithm given in Zadeh and Desoer:

Bozi‘[

%

By

o

-(l/k)tr(_@k_lé) k=1,2,...N (A.11)

A+d k=1,2,...N-1

Bt dd

With the Ei and)‘i available, Eq. A, 8 suggests an easy way to
bound _An:

N
1<) I IPIE <N

HE |
1=1

1™ |E. | (A.12)

where the inequalities and absolute values are to be interpreted entry
by entry. Assuming the matrix _én to be stable (i.e., l)\i l <1 for all
i), this bound does not diverge for large n. An analogous procedure

. At
gives a bound for e=—":

{Re).)t (Re\.) t)
2t <) e YIE. |<Ne ' max |E. | (A.13)
- =1 - —1

£ max
i=1

Here the bound goes to zero for large t if eét is stable (i.e.,
Re)\i< 0 for all i).

The above method for bounding én is straightforward but tedious
to program, and no simpler scheme was found. For this reason, it

was not used in the program.

APPENDIX B

USE OF THE PROGRAM

1. INPUT VARIABLES

Quantities which must be assigned values as input are as follows:

MSYS = dimension of system state vector x

NSYS = dimension of system input vector u

NTIMES = N, the number of intervals into which the
time axis [0, T] is divided

TIMES : array containing to, tl, .. .tN

EPS = €. See Eq. 17

TOL1l, TOLZ2, TOL3, TOL4 : error tolerances.
See Sections III C-F

OUTPARM indicates matrices to be printed out
= 0 : none

= 1: H(n), HPHI(n)

= 2 : H(n), HPHI(n), HEXP(n)
= 3 : H(n), HPHI(n), HEXP(n), HINT(n)
= 4 : H(n), HPHI(n), HEXP(n), HINT(n),

on the first itera_,'ti_on only
ITERMAX : maximum number of iterations
A,B,F,Q,: arrays containing matrices of the same names

L : array containing L(n), n=0,1,...N-1. Initial values
must be supplied

VKEEP : array providing temporary storage for V(t),
Initial value (for reference) is Riccati so-

lution at time to .

Values for these variables are supplied on input cards. The for-

mat is illustrated by an example.

0 1 4 6 7 10 11
é = E = E = 9 =
2 3 5 8 9 12 13
to = 0.1, t1=0.2, tZ:T=0.3

-27-

Solution of Riccati equation at t0 =

The input cards are then as follows:

NSYS = 2, MSYS = 1, NTIMES = 2;

EPS =1, TOLl = 0.01, TOL 2 = 0.0001, TOL3 = 0,01,
TOL4 =1.01, OUTPARM = 4, ITERMAX = 25;

-5, -6, -7, -8,

2. OTHER VARIABLES

LHAT : array containing __I’.\,(n)

H: array containing H(n) = A - B L(n)
HPHI : array containing Q(t to)
 Hms,
HEXP : array containing ¢

&
n
. . H(n)'r . H(n)T
HINT: array containing e— [Q+L(n) L(n)] e= dr
0
STEPO : array containing logzMn

STEP1l : array containing M = number of steps in n-th
interval

STEP2 : array containing § = (t - n)/M

(all for n =0,1,...N-1)

3. MAIN PROGRAM : SUBOPT

This reads in all the inputs, including the initial values for L(n)
(Box 1 in Fig. 1), and then calls COMPSTP. Next it calls INTEG
once for each interval, n = N-1, N-2, ... 1,0. Finally, it updates

-28 -

L(n), checks for convergence, and repeats the iteration with smaller

€ or goes on to the next iteration (Boxes 7-11 in Fig. 1).

4, SUBROUTINES COMPSTP AND INTEG

COMPSTP (Boxes 2-3 in Fig. 1) calculates the step sizes for each
)
n
H(n)6 '
interval and the matrices 2(t ,t;), e . and [f cHM)'T
0
H(n)T
[Q+L(n)'L(n)]e="""dr] for n=0,1,2,...N-1.
INTEG.(Boxes 4-5) computes g(t,to) and V(t) at each of the
M_ steps on the n-th interval [tn, tn+1] . Then it performs the two

A
integrations in Eq. 18 and returns a new L(n).

5. SUBROUTINES MATMULT AND MINV

MATMULT has several entry points, which are just a collection
of matrix manipulation and output routines. The listing of this sub-
routine is self-explanatory,

MINV is a matrix inversion routine which has been translated

into PL/1 from the IBM system/360 Scientific Subroutine Package.

6. LISTINGS

On the following pages are listings of the various parts of the

program,

SUBGPT: PROCEDURE OPTIONS{MAIN);
DECLARE {NSYSeMSYS.NTIMESFIXED;
BIGLOOP : GET DATA(INSYSyMSYS,NTIMES);
PUT PAGE EDIT(
'BEGIN PROCEDURE TO CALCULATE SUBDPTIMAL GAIN MATRICES')(X{20),A);
PUT SKIP(2) DATA(NSYS,MSYS, NTIMES);
BEGIN; DECLARE EPS.TOL1,70L2+TOL3,TOL4y TEMP, TEMPA, TEMPB,
{ITERyITERXy I TERY,[TERCNT, ITERMAX ,0UT PARM,
Lede Ky My NJFIXEDy TIMES{(OINTIMES),
(IDENT yA +F 4Q+VKEEP,C D) (INSYS,NSYS) FLOAT,
BINSYS,MSYS)y BP{MSYS ,NSYS),
[LyLHAT) (MSYSyNSYS)0:NTIMES-1,2:1)FLOAT,
{ HoHPHI yHEXP yHINT)} {NSYS,NSYS,0:NTIMES-1) ,
(STEPOy STEPL1) (O:NTIMES-1)FIXED,y STEP2{O:NTIMES-1),
VTRACE(O:1)s NORM RETURNS(FLOAT);
GET DATA(EPS,TOLL,TOL2, TOL3,.TOL4,0UTPARM, [TERMAX)S
PUT SKIP{2) DATA(EPS.TOL1,TOL2,TOL3, TOL4,JUTPARM,ITERMAX) ;
GET LISTITIMES): PUT SKIP{2) DATA(TIMES);
GET LIST{A); CALL MXOUT{A,'A MATRIX');
GET LISTIB); CALL MXDUT(B,'B MATRIX?)
GET LIST(F); CALL MXOUT{Fs'F MATRIX?')
GET LIST{Q); CALL MXOUT(Q,'Q MATRIX?')
IDENT=0; DO 1=1 TOU NSYS; IDENT(I+I)=135 END; HPHI{*,%,0)=IDENT3;
ITERyITERXy ITERCNT=1; ITERY=0; CALL TRANSPS{(B,B8P);
/7% INITIALIZATION OF L MATRICES*/

ws % we

DO 1=0 TO (NTIMES-1)i GET LIST(L{*,%,1,1))5 END;
GET LEISTIVKEEP);
PUT SKIP{3i; CALL MXQUT{VKEEP.'RICCATI SOLUTION AT TIME 0°%};

TEMP=0; DO I=1 TO NSYS; TEMP=TEMP+VKEEP{I,I); END;
PUT SKIP(2) EDIT(*TRACE OF RICCATI SOLUTION =1*,TEMP)(A,E{16454+6)1};
CALL MXS{L (®¢*,%,1) o NTIMES, *INITIAL FEEDBACK MATRICES (L)}"'})3;
LOOP: PUT PAGE EDIT{'%* * * I TERATION NUMBER *,ITERCNT,
! * *) (X{30)4A,F(3),A);
IF ITER == ITERCNT THEN PUT SKIP LIST{*IVYER =1,ITER};
IF ITER>L & OUTPARMD>3 THEN CQUTPARM=O0;
/% COMPUTE H = A - BxXx{ */
DO I=0 YO (NTIMES-1);
CALL MATMULTID oL{%*,*,I;ITERX).C):
Hi{*,%,1)=A-C3 END;
IF QUTPARM>O THEN
CALL MXS{H,NTIMES ,*CLOSED-LOOP SYSTEM MATRICES (H)');
CALL COMPSTPIVKEEPITERyHyHPHI yHEXP yHINTy Ly Qo TIMES,QUTP ARM,
TOLL,TOL2s STEPO,STEP1,STEP2);
VK EEP=F;
PUT SKIP{3) LIST{(* INTERVAL ROMBERG INTEGRATION ERRIRS'}3
DG J= (NTIMES-1) TO O BY -1;
CALL INTEG(J+»STEPO+STEP1+VKEEP+sBPyHPHI4INT,HE XP,
TIMES,LHAT, ITERFLUSH) GO TO NOFLUSH;
FLUSH: LHAT [*,% 4 J2 ITERX)=L{*,%,J, I TERX) ;3 NOFLUSH: END;
CALL MXOUT(VKEEP,"MATRIX VIT=0}*');
VIRACE{ ITERX)=03D0 I=1 TO NSYS;
VIRACE{ ITERX)=VTRACE(ITERX) +VKEEP(I,1}; END;
PUT SKIP{2) LIST(*TRACE{(V) = ',VTRACE(ITERX});
IF EPS~=1 THEN PUT SKIP LIST{'EPSILON =*,EPS);

IF ITER =1 THEN GO TO HERE;
IF VIRACECITERX)>TOL4*VTRACE(ITERY) THEN DO;

ITER=ITER~-1; ITERY=ITERX;SITERX=MOD{ITER,2); EPS=EPS/2;

PUT SKIP{2) EDIT(*THIS ITERATION WILL REPEAT WITH EPS=EPS/2"')
(X{20)yA);

GO TO THERE; END3

-29-

HERE: DO 4=0 TO (NTIMES-1): DO M=1 TO MSYS; DO N=1 TO NSYS;
TEMPA=L{M,N,Jo»ITERX); TEMPB=LHAT{M,N,J,ITERX};
{F TEMPA=Q | TEMPB=0 THEN IF ABSI{TEMPA+TEMPB)>TOL3
THEN GO TO THEREZELSE GO TO QUIT:
IF ABSU{TEMPB/TEMPA) 1) >TOL3 THEN GO TO THERE;
QUIT: END: END; END; PUT SKIP(8);
CALL MXS{LHAT(*,%,%, [TERX),NTIMES,
* THE PROCEDURE HAS CONVERGED TO THE FOLLOWING MATRICES{L) *);
PUT SKIP{8): GO TO BIGLOOP;

THERE: If EPS=1 THEN DG J=0 TO (NTIMES~-1);
L{*e %o J ,IJTERY}=LHAT(%*,%,]J,] TERX); END;
ELSE DO J=0 TO {NTIMES-1)3
Li*e %o Jo ITERYI=(1-EPS) A %, % Jy ITERX)+EPS*LHAT (%, %,J, [TERX);
END:
CALL MXS(L{ ®,%,%,ITERY)y NTIMES, 'NEW FEEDBACK MATRICES{L)*');
IF ITERCNT>=ITERMAX THEN DO;
PUT SKIP(6) EDIT(*PROCEDURE TERMINATED AT ¢,ITERINT,
CITERATIONS*I(AZF(3)4A);
IF EPS<] THEN CALL MXS(LHAT(*,%,%, ITERX),NTIMES,
'L HAT MATRICES IN FINAL ITERATION WERE'};
PUT SKIP{8): GO YO BIGLOOP; END;
ITER=ITER+ 13 ITERCNT=ITERCNT+1 ;I TERY=ITERX s [TERX=MOD(ITER,2) ;
GO TO LOOP:
EN D3 /*FIRST BEGIN STATEMENT®x/
END SuUBOPT:

COMPSTP: PROCEDURE{VKEEPyITERyHyHPHI,HEXP yHINT,L,Q,TIMES yOJTPARM,
TOLLl,TOL2,STEPO,STEPL1,STEP2) ;
DECLARE {NTIMES,ITERyNSYSyMSYS,OUTPARM)IFIXEDse TOL1y» TOL2, TIMES{ x),
(STEPQ,STEPL) {*)FIXED,y, STEP2(%*), (VKEEP, Q) (¥,%),
{ HeHPHI s HEXPsHINT) (¥oko %), L (%,%,%,%)FLOAT,
NORM RETURNS{ FLOAT);
/*COMPUTES STEP SIZES, CALLS COMPEXPs CIOMPINT,
AND COMPUTES PHI AT ENDS OF INTERVALS*/
NSYS=DIMIL,2)3 MSYS=DIM{L,1); NTIMES=HBOUNDI(TIMES,1);
BEGIN:
DECLARE (FDOT ¢ MAX \NORMV, NCRMH, NORMPHI)FLOAT,LP{NSYS yMSYS)F LDAT,
LHOLD (MSYS,NSYS) FLOAT, (C4D)INSYSyNSYS),
{I14JeKse ITERX)FIXEDs
NORMV=NDRM{VKEEP); IF NGRMV<K] THEN NDRMV=1;
{TERX=MOD(ITER,2);
DO J=0 TO (NTIMES-1):
NORMH=NORM(H{*,%,J)}); NORMPHI=NORM(HPHI(*,%,J));
LHOLD=L{ *,%, J,ITERX) ;
CALL TRANSPS{LHOLDsLP);
CALL MATMULT(LP,LHOLD,C);
C=C+0Q;
FOOT=4*NORMH*NORMPH I *% 2% { NORMH®NORMV+NORM(C) };
MAX=SCQRT(FODOT*{(TIMES({J+1)-TIMES(J))%&3/(L2%TOLL});
IF MAX >=512 THEN DO; I=512; K=93
PUT SKIP(2) EDIT{*INDICATED NUMBER OF STEPS FOR INTERVAL %4J,*' IS ¢
'MAX, t. 512 STEPS WERE USED.')(A+F(3)2A,F(6),A);

-30-

GO TO HERE; END 3
I=163 K=43
DO WHILE (I<KMAX): [I=1%2; K=K+l; END3
HERE: STEPO(J)=K3 STEP1(J)=1; STEP2{J)=(TIMES(J+1)-TIMES(J))}/I;
CALL COMPINT;
CALL COMPEXP;
IF JSINTIMES-1) THEN DO:
K=13 C=HEXP (%4%4J);

DO WHILE (K<I); K=2%K3
CALL MATMULTI{C,C.Di; C=D3; END;
CALL MATMULT(C yHPHI(*,%,J) ¢ HPHI(¥y%*,J+1));
END3 /¥ IF STATEMENT %/
EN D3 /% END OF DO LOOP %/
PUT SKIP{3) LIST(? INTERVAL SUBINTERVALS INCREMENT *);

DO J=0 TO (NTIMES-1);
PUT SKIP EDITI{JWSTEPL{J) oSTEP2(JNIIXI6)+F{3)yX(12),Fl(4),

X{10)4E{12+45,6})3 END3
IF DUTPARM>O THEN LALL MXS{HPHI,NTIMES,*HPHI MATRICES*);
IF OUTPARM>D1 THEN CALL MXS{HEXP,NTIMES,*'HEXP MATRICES');
IF OUTPARM>2 THEN CALL MXSU{HINT,NTIMES,*'HINT MATRICES');

RETURN:
COMP INT: PROCEDURE; /*COMPUTES HINT ON INTERVAL J=*/
DECLARE {SUMTERM ¢HNyHPy TEMPL, TEMP2) INSYS,NSYS)e (K,M,N)FIXZD;
TERM= C*STEP2(J); SUM=TERM;
HN=H{ *, %4 J)%STEP2{J)} 3 CALL TRANSPS({HN,HP);

DO K=2 TO NSYS:

~ oAy MATAMINI T W

CALL MATMULT{HP,TERM. TEMPLY: (AL MATMULTITERM,HN,TEMP2);
TERM={TEMPL+TEMP2) /K; SUM=SUM+TERM; END;
L0OP: K=K+13
CALL MATMULT{HP,TERM,TEMPL)i CALL MATMULT(TERM,HN,TEMP2);
TERM={ TEMP L+TEMP 21 /K3 SUM= SUM+ TERM§
DO M=1 TO NSYS: DO N=1 TO NSYS;
IF SUM{MNJ}=0 THEN IF ABS{TERM(M,N})D>TOL2 THEN GO TO LOOP;
ELSE GO TO QUIT;
IF ABS{TERM(M,N)/SUM{M,N))>TOL2 THEN GO TO LOOP;
QUIT: END; ENDi:

[UR 4 s
HINT(E,*,4)=8UM;

/¥COMPINT%/ END;

COMPEXP: PROCEDURE; /*COMPUTES E TO THE HUJIT FOR INTERVAL J ¥/
DECLARE (KosMyNIFIXEDy{HT +SUMTERMs TEMP) (NSYS,NSYSI}3
SUM,TERM=HPHI{ %,%,0) ; /¥ = IDENTITY MATRIX*/
HT=H{*,%,J)*STEP2(J);

DO K=1 TO NSYS;
CALL MATMUL T{HT,TERM,TEMP);
TERM=TEMP/K; SUM=SUM¢TERM; END;
LOOP: K=K+1; CALL MATMULT(HT yTERM,TEMP) ;
TERM=TEMP/ K3 SUM=SUM+TERM;
DO M=1 TO NSYS; DO N=1 TO NSYS;
I1F SUM{M,N)=0 THEN IF ABS{TERM{M,N))>TOL2 THEN GO TO LOOP;
ELSE GO TQ QUIT;
IF ABS{TERMIM,N}/SUMIM,N))D>TOL2 THEN GO TO LOOP;
QUIT: END; END;
HEXP [%, %4J)=5UM3

/*COMPE XP%x/ END3
END; /%FIRST BEGIN*/
/*COMPSTPx/ END3

-31-

INTEG: PROCEDURE(JoSTEPO,STEPL,VKEEP,BP ,HPHI HINT,HEXP,
TIMES JLHAT (ITERsFLUSH);

DECLARE (Js NSYSyMSYS, ITER yMM)F IXED,» (STEPQ, STEP1) {*) FI XEDs, TIMES(*),

VKEEP({%,%)e BP(k,%), (HINT HPHI HEXP){*,%,%]},

LHAT(®,%,%,%)F| OAT, FLUSH LABEL, NORM RETURNS(FLOAT)};

/% DOES ALL COMPUTATIONS AND INTEGRATIONS T3 GET LHAT
ON INTERVAL J x/
MM=STEPL(J)3 NSYS=DIM{LHAT,2); MSYS=DIMILHAT,1);
BEGIN; DECLARE (PHI,VI{NSYS NSYS,0:MM), DET, I FIXED,
(CeDoE)INSYS)NSYS)y LHOLD(MSYSNSYS)FLOAT;

/% COMPUTE PHI ON INTERVAL J *®/
PHI(*¢%,0)= HPHI(*,%,J); = HEXP{ ¥,%,J);
DO I=1 TO MM: CALL MATMULT{(C,PHI (*,%,]1-1),PHI{*,%,])); END;

/% COMPUTE V ON INTERVAL J */
V(x,%,MM)=VKEEP 3 CALL TRANSP SUHEXP(%®,%,J),E) 3
DO I={MM-1) T0 O BY -1;

CALL MATMULT(E+VIi¥s*,1+1)4D);

VIixo*#, [)=HINT(*,%,J)3

CALL MULTADD(D+CoVI*ke%,1))3 END;
VKEEP = V{¥*,%,0)3

/* ROMBERG INTEGRATION OF THE INTEGRALS C AND D */
BEGINS
DECLARE{KyMe N)FIXEDy Zo (TEMP 4 SAVET , SAVES J(NSYSy NSYS),
(S+sTHO::STEPO(J)}» NSYSsNSYS)
M=STEPG{J); I= (TIMES(J+1)-TIMES(J})/2}
CALL TRANSQR({PHIl*,%,0)s TEMP); T{O, %, %)=TEMP;
CALL MATMULTH{V(*¢%,0)2TEMP 4S{Os*e¥*));
CALL TRANSQR{PHI(#*4%, MM}, TEMP);
T(Oo¥y¥)=7%{T{Oy*+%) +TEMP);
CALL MULTADD{V{#*4%yMM) yTEMPy S{O9*9%))35 S(O9%y*)=L%¥5(Dy%,%) 3
DO K=1 TO M3
IF K=M THEN DO; SAVET=TI[Os*,%); SAVES=S(0+*,*); END;
[=2%%x(MK); TUKo¥ %} 4S(Ko¥*ex}=0;
DO N=1 TO (MM-1) BY (2%1);
CALL TRANSQR{PHI(*,%4N) TEMP)} T(Ke*g#*)= T (Ke¥ky*)+TEMP;
CALL MULTADDIV{*,%, N) s TEMP, S(Ky*4%))3 END 3
TUKo¥o¥) = T(K-Lo*,%)/2 + Z¥T(Ko*s%) ;

SIKe%, %) SUK-1s¥,%) /2 + T*S(Ky¥,%);

1=2/23

DO N=1 TO K3
TIK-Ne¥e%) = ((4%EN) ST (K-N+lok %) — T(K-Ny¥*,%)) / (&¥¥N-1);
S{K-Ne*o¥) = ((4®kNI*S {(K-N+Lo*s%) - S{K-Ny*,%)) / {(4%&N-1); END;

END3

C=T{0s#*,%); D=S{0e*e%};

SAVET=ABS{SAVET-C): SAVES=ABS{ SAVES-D):

PUT SKIP EDIT(J sNORM(SAVES) +NORMISAVET))I(X(6),F(3),

X{ 10)9E{(9+2+3) s X{1)+E(952+3))3
END 3 /* END OF ROMBERG ¥/

E=C3 CALL MINV(C,DET);
IF DET=0 THEN DO3

CALL MXOUT{E,*RESULT OF ROMBERG INTEGRATION WAS SINGULAR');
PUT SKIP; GO TO FLUSH; END;

CALL MATMULT{(D.CeE); 1=MOD(ITER, 2} 3}

CALL MATMULTI(BP,E,LHOLD); LHAT(*,%,J,13)=LHOLD;
END3 /¥FIRST BEGIN®*/
END INTEG:

-32-

MATMULT: PROCEDURE{A¢BsC); /*C=A%B, MATRIX INDICES START WITH 1 #/
DECLARE (T +JeKoNTIMESyNIFIXEDy (A)ByCl{&e%) Dk, kyk),
NAME CHARACTER{80IVARYING;
DO I=1 TO DIM{A,1);
DO J=1 TO DIM(B,2)3
Clled)= SUMLA(L*)1%Bl*4J))3 END 3 END3 RETURN;
MW TADD: ENTRY(A+B,C); /¥ C = C + A%B %/
DO I= 1 TO DIM(A,1};
DO J= 1 TO DIM(B.2)3
ClIsd)=C(I,J)+SWMIA(TI,*)*Bl%*,J)); END; END: RETURN;
TRANSPS: ENTRY{A,B)3 /¥ B = A TRANSPISED %/
DO I=1 TO DIM{A,1);
DO J=1 TO DIM(A,2);
BlJ,yD)=AL1+3)3 END; END; RETURN;
TRANSQR: ENTRY{(A,B8); /¥ B = A%AY X/
DO I=1 TO DIM(A.1)3
BUIsI)= SUMIATT ,*)*Al{l,%));
DO J=1 TO ({I-1);
BlIsd)aBl Jell= SUMIA(TL»*) ®XA(Jo%)) END END i RETURN;
NORM: ENTRY(A) FLOAT: /% RETURNS NORM OF A %/
RETURN(SQRT(SUM(A®A))}/DIM(A1));
MXOUT: ENTRY(A,NAME); /*PRINTS NAME AND MATR] X*/
IF NAME -~= *NULL®' THEN PUT SKIP{2) LISTUINAME);
N=DIM{(A,2); DO I=1 TO DIMIA,1);
PUT SKIP EDIT{ULA{I,J) DO J=1 TO NIIE(164,5,6));
END; RETURN;
RY!IDSNTIMES.NAME): /#PRINTS SEVERAL MATRICES ¥/
CNULL® THEN DUT SKIP(?2) LISTINAME);

MC ~=
M{D.2);
K=0 TO (NTIMES-1): PUT SKIPL2) EDIT{*INTERVAL*yK)(A,F(3));
DO I=1 TO DIM{D,1);
PUT SKIP EDIT{{(D(I,J+K) DO J=1 TO NI)Y(E(164546)); END; END;
END MATMULT:

MINV: PROCEDURE(B.D); /*RETURNS WITH D= DET By B = B INVERSE ¥/
DECLARE B(*+%),D+,BIGA,HOLD,
(INs IoJoKoIJdoIKeIZydlsdKeJPrJQeJRsKI 9sKJ9KKyNKIFIXED;S
N=DIM(B, 1)
BEGIN; DECLARE (LoM) (N}, AIN¥%2)3
D3 J=1 TO N3 DO [=1 TO N3 A(IJ*N-N+II=B(I,J); END 3 ENDS
/*BEGIN SSP SUBROUT INE*/
D=13 NK==N3

DO K = 1 7O N3
NK=NK+ N3 LK) MIKI=K3 KK=NK+K3 BIGA=A([KK);
DO J=K TO N3 I1Z=N*{J~1)3
DO I=K 70 N3 14=17 + I3
IF ABSI{BIGAI<ABS(A{IJ}} THEN D3J;
BIGA=A(IJ)3 LIK)=1I3 M(K)=Jd; END; END; END;
/¥ LINE 20 */

J=L(K);

If J>K THEN DO3 KI=K-N3
DO I=1 TO N3 KI=KI+Nj HOLD=—A(KI);
JI=KI-K+J3 AKII=A(JIL); ALJII=HOLD: END; END;

-33-

/* LINE 35 */
I=M{K);
IF I>K THEN DO: JP=N*{]-1)3
DO J=1 TG N3 JK=NK+J3 JI=JP+J;

HOLD=—-A(JK} 3 A(JKI=ALJID: A{J1)=HOLD: EN D3 END;
/% LINE 45 */
if BIGA=0 THEN DO: 0=0; RETURN; END;
DO I=1 10 N3 IF 1 ~= K THEN DO3;
IK=NK+I3 ACLIK)I=ALIK) /{-BIGA); END3 END;
/% LINE 55 */

DO I=1 TO N3 IK=NK+[3 [J=I-N;
D0 J=1 TO N3 LJ=IJeNs IfF [-=K & J-~=K THEN DO;

Kd=lJd=1+K3 ALLJY=ALIK)*A(KJI)I+A(LD) END; END; END3;
/% LINEG6S *x/
KJ=K-N3
DO J=1 TO N3 KJ=KJ+N;§
IF J ~= K THEN A(KJ)=AIKJ) /BIGA; END3

D=D*BIGA; A(KK)I=1/BIGA;
END3 /% LINEBO */

K=N3

L100: K=K-13
IF K>0 THEN DO; I=L{K);
IF I>K THEN DO JOo=N={K-1}3 JRaN#{I-1)3
DO J=1 TO N3 JK=JQ+J3 HOLD=A{JK) 3
JI=JR +J; ALJKI==-ALJI)}3 A(JL)=HOLD; END; END;
J=M{K); If J<=K THEN GO TO L100; KI=K-Nj;
DO I=1 TO N3 KI=KI+N; HOLD=A(KI}3
JI=KI-K+d3 AKI) =-AlLJI): A({JI)= HOLD; END;

GO TO tL100:
END;
/ *END OF SSP SUBROUTINE */
DO J=1 TO N3 DO I=1 TG N} B{I,J)=A(JEN=-N+I)}; END ; END;
END:
/E*MINV#/ END 3

-34-

10.

11.

REFERENCES

Kleinman, D. L., ""Suboptimal Design of Linear Regulator Systems
Subject to Computer Storage Limitations,' Report ESL-R-297,
M.I.T., February, 1967,

Athans, M. and Falb, P. L., Optimal Control: An Introduction to
the Theory and Its Applications, McGraw-Hill, 1966.

Athans, M. and Schweppe, F. C., "Gradient Matrices and Matrix
Calculus, " Technical Note 1965-53, M.I.T. Lincoln Laboratory,
November, 1965.

Ralston, A., A First Course in Numerical Analysis, McGraw-Hill,
1965.

Levis, A., "Error Bounds in Some Matrix Calculations, ' Re-
search Note 1967-2, Control Theory Group, Electronic Systems
Lab., M.I.T., May, 1967.

Zadeh, L. A. and Desoer, C. A., Linear System Theory, McGraw-
Hill, 1963,

4 acmay

Morgan, B. S., Jr., ''Sensitivity Analysis and Synthesis of Multi-
variable Systems, " IEEE Transactions on Automatic Control,
Vol. AC-11, No. 3, July 1966, p. 506.

Hamming, R. W., Numerical Methods for Scientists and Engineers,
McGraw-Hill, 1962.

Wilkinson, J. H., Rounding Errors in Algebraic Processes,
Prentice -Hall, 1964.

Berezin, I. S., and Zhidkov, N. P., Computing Methods, Pergamon
Press, 1965,

Levis, A., "Optimal Control of Linear Sampled-Data Systems, "
Sc. D. Thesis, Dept. of Mechanical Engineering, M.I.T., (to
appear).

-35-

